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Abstract

In this paper we give a new proof of invariance of the Morse-Fukaya algebra.

Morse theory starts with a manifold L with a smooth function H : L → R, and returns a cohomology
theory (C•(L;H), d) where Ck(L;H) is the R-vector space with basis given by critical points of f , and d
count gradient flow lines between those critical points. It’s a beautiful construction, drawing in pieces of
geometry, topology, analysis and homological algebra together to provide a picture-friendly interpretation to
cohomology. Two wonderful expositions of the subject are [AD13] and [Hut02], which provide an detailed
construction and applications of Morse Cohomology. We’ll assume some familiarity with the construction of
Morse theory, and fix some notation at the start.
Morse cohomology takes as it’s input data a triple (L, g,H), where L is a manifold, g : TL × TL → R is a
metric, and H : L → R is a smooth function. Not any triple will do; we ask for the following conditions to
hold:

• The function H should be Morse, so that it has isolated critical points and the Hessian at each critical
point is non-degenerate. The number of positive eigenvalues of the Hessian is called the index of the
critical point, and will be denoted ind(f).

• Our choice of Morse function H gives us a map φt : L×R→ L given by the flow of the gradient vector
field on X. To each critical point p ∈ Crit(f), we can associate a upward and downward flow manifold,
given by

W+
p := {x ∈ X | lim

t→∞
(x) = p}

W−p := {x ∈ X | lim
t→−∞

(x) = p}

The dimension of the upward manifold is dimW+
p = ind p, and the downward manifold has dimension

dimW−p = dimX − ind p. We require that W+
p ∩ W−q is a transverse interaction for every pair of

critical points p and q.

From this data, we can associate to every pair of critical points p and q the moduli space of flow lines between
p and q,

M1(p, q) := (W−p ∩W+
q )/R

The R action on Mq(p, q) comes from φt. By construction, whenever this manifold is non-empty, it’s dimen-
sion dim(M1(p, q)) = ind(q)− ind(p)− 1. This moduli space is a smooth, not-necessarily compact manifold.
However, it admits a compactification M̄∞(p, q) whose codimension 1 boundary strata counts broken flow
lines:

∂M̄∞(p, r) =
⊔

p<q<r

M1(p, q)×M1(q, r).

The Morse Complex1 C(L;H) is a chain complex with coefficients in R, which as a vector space whose basis
is the critical points of f ,

Ck(L;H) := R〈p ∈ Crit(f), ind p = k〉
1Here, we suppress the g.
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The differential on this complex is given by counting flow lines

〈d(p), q〉 := #M(p, q).

The boundary compactification by broken flow lines is used to prove the relation d2 = 0.
Having fixed some notation, we are ready to summarize the remainder of this paper.

• The first goal is to provide further exposition on the Morse-Fukaya algebra as described in [Fuk96].
When one tries to give C•(L,H) a product structure, one is forced to consider the structure of A∞
algebra. We’ll provide a picture-heavy exploration of the Fukaya-Morse algebra, giving motivation for
A∞ structures.

• The second section examine how we show that the resulting complex is independent of the choice of
Morse function. Our proof is very geometric, and an extension of the classical proof of invariance of
the Morse complex of L. In the classical proof one can construct a chain map between C(L;H0) and
C(L;Ht) by considering an interpolating function C(L× I,Ht). However, this proof will not yield an
A∞ morphism between these two chain complexes. Instead, we will show that if one wants to construct
an A∞ morphism between these two complexes, one needs to consider an interpolating Morse function
on a large parameter space

C(L× Ik, ft1,...,tk .)

Both of these sections will be presented in three portions:

• An expectation on how we should construct these objects and where that expectation breaks down

• A discussion of the combinatorial objects involved in fixing these expectations

• The resulting moduli space of objects one is forced to consider as a result, and a proof of the resulting
algebraic structure.

1 Morse-Fukaya

1.1 First Attempt

How should one take the product of two critical points when given a Morse function to work with. If a flow
line gives us a geometric intution on how to construct the differential, one might reasonably hope that a flow
tree captures the requisite information for constructing a product operation on the space of critical points.

p q

m2(p, q)

Unfortunately, this hope runs into two problems:

• A obvious problem comes from the fact that if all 3 flow lines in a flow tree are flow lines of gradH,
then they must all be the same flow line. There are two different ways to solve this problem: one can
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either work with a variety of different Morse functions, or one can choose small perturbations to the
Morse flow in order to make the intersections of flow spaces corresponding to the product transverse.

PerturbationProblem

We will outline some of the considerations needed to take the perturbative approach in Section ??.
If one instead considers multiple different Morse functions, one would construct the Fukaya-Morse
category.

• Outside of the analytic difficulties in constructing a product, we also have interesting geometry that
pops up when we try to prove algebraic properties of the product. One may hope, for instance, that
this product is associative. Unfortunately, there is no expectation for the product to be associative, as
the different orders of composition give us very different looking trees.

p q r p q r

m2(m2(p, q), r) m2(p,m2(q, r))

This is not surprising, considering that one should only hope for product operations of cohomology
to be associative up to a homotopy. Where Morse theory differs from cohomology is that the Morse
function explicitly gives us the data we need to construct that homotopy, by considering trees with
three inputs. This story repeats itself, as the choice of homotopy data for associativity is itself only
defined up to an explicit homotopy by studying trees with 4 inputs. This discussion naturally leads us
to considering the combinatorial construction of the Stasheff associahedra, its relation to metric trees,
and the A∞ -algebra.

1.2 Combinatorial Objects

The homotopies and higher homotopies of product structure that we previewed just a few sentences ago are
artifacts of the combinatorics of metric trees.

Definition 1. A ribbon metric tree (T, `) is a tree T = (V,E) with the following additional data:

• A ordering of the leaves of T , and a selection of a root.

• An assignment of lengths in [0,∞] to each of the edges of T , where each internal edge has finite length,
and each external edge receives length ∞.

The valency ν(T ) of a metric tree is the number of leaves.
The combinatorial type of a metric tree is the tree T .
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`1 `2

The metric trees of fixed combinatorial type T can be identified with the space MT := [0,∞)|E|−ν(T ). One
expectation that we get from the pictures is that the boundaries of MT coming from length zero edges
correspond to metric trees where various edges have been contracted.

Claim 1 (The contraction identification). Let T/e be obtained by T by contracting an edge e. Then there is
a map, bijective onto the image, from MT/e × [−, ε)→MT .

`1 `2

`1 =∞ `1 `1 = `2 = 0 `2 `2 =∞

Without considering contraction, the space of all valence k-trees is a disjoint set; however, after making the
natural identification of length 0 edges with contracted edges, each spaceMT with ν(T ) = k becomes a cell
in a CW-complex

Mk :=
⋃

ν(T )=k

MT

called the Stasheff associahedra.

Theorem 1. The space of ribbon metric trees with valency k, Mk is a smooth manifold.
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The space of ribbon metric trees with valency k is noncompact as edge may have lengths that diverge to
infinity. However, this non-compactness can be understood as a “breaking” of the ribbon tree into two
smaller ribbon trees along the unbounded edge.

Theorem 2. There is a compactification M̄‖ into a manifold with corners. The k-codimensional strata are
given by k-broken ribbon trees. In particular, the one dimensional strata can be described as⋃

1≤i≤j≤k
Mj−i+1 ×Mk−j+i

While we skip a proof of this theorem, we’ll provide a pretty picture showing a portion boundary of
M5, where on sees pentagonal and square facets, corresponding to the boundary componentsM2×M4 and
M3 ×M3 respectively. Here is a drawing of three of the facets of the associahedra, two pentagons and a
square. The cell decomposition is given by the dotted lines, and I’ve highlighted a cell in light blue. One point
of confusion about the associahedra: the cell decomposition does not give us the boundary stratification;
rather we identify each cell with [0,∞]3, and the “infinite” boundary of these cells each contribute a portion
of the boundary stratification of M5. Notice that each cell is a hexagon with a trivalent vertex on the
inside. This corresponds to the 6 edges of [0,∞]3 which have a coordinate set to ∞. Each cell corresponds
to a tree of fixed combinatorial type, while each face corresponds to several types of trees exhibiting the
same breaking property. I’ve additionally labeled some of the codimension 2 and 3 boundary strata of the
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associahedra, which correspond to trees that have been broken 2 and 3 times respectively.

1.3 The Morse Theory:Flow Trees

When we are given (L,H), a manifold equipped with a Morse function, we can encode the combinatorics of
ribbon metric trees into the Morse theory of (L,H) by replacing the edges of the ribbon metric tree with
flow lines of H. The combinatorics of the ribbon tree will tell us about the incidence relations of the flow
lines, while the lengths of the edges on the ribbon tree will tell us how long we flow along each of the curves
in the tree. Finally, the boundary strata of broken ribbon trees will tell us about the boundary of the moduli
space of flow trees.
Let T be the topological realization of a tree. We will study maps u : T → M where the edges correspond
to Morse flow lines of f and whose leaves limit to critical points of the Morse function. If we näıvely take
this approach the resulting trees will be entirely contained within a flow line; we will therefore need to add
perturbative data to the edges of the tree to achieve the necessary transversality to have an interesting count
of flow trees.

Definition 2. Let (T, `) be a metric tree. A perturbation datum for T is a set of choices of smooth
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perturbations for each edge
pe : [0, `(e)]×M → R

which limits to zero at the leaves of T .
A collection of perturbation datum for every metric tree will be called a perturbation datum for (M,H) and
denoted P. A perturbation datum P is coherent if p(T,`) depends smoothly on (T, `) in the moduli space of
trees of valency ν(T ), and the perturbation datum on broken trees in the stratum of M̄‖ matches the of the
perturbation datum on Mi ×Mj after identifying broken trees.
A perturbation datum for T is transverse if for every vertex v with incident edges e1, e2, . . . , ek, the Morse
functions H + pei have transverse gradients away from the critical points.

A non-trivial analytic result is to show that coherent choices of perturbations exist.

Theorem 3 ([Abo09; Mes16]). There exist a choice of coherent transverse perturbation datum.

This perturbation set up makes the count of trees whose edges match gradient flow lines reasonable.

Definition 3. A labeling of a metric tree is an assignment to each of the leaves ek a critical point ci.
Let (T , `) be a labeled metric tree, and let P be a coherent perturbation datum. A Morse (T , `) flow metric
tree is a map u : T → G which is smooth on edges, and continuous at vertices. This map should satisfy the
perturbed gradient flow equation at each edge,

∂t(u)|ei = − grad(H + pei)

with the additional requirement that at each leaf ei,

lim
tei→∞

u(tei) = ci

and at the root e0, we have
lim

te0→−∞
u(te0) = c0.

The space of all such flow trees in a fixed combinatorial type is denoted

MT (c0; c1, . . . ck).

The space of the space of Morse flow trees enjoys many of the same properties as the space of Morse flow
lines, which may be treated as the moduli space of flow trees with 1-input.

Claim 2. The space MT (c0; c1, . . . ck) is a smooth noncompact- manifold with corners of dimension

(k − 2)− ind(c0) +
∑
i≥1

ind(ci).

The corners of MT (c0; c1, . . . , ck) comes from the flow trees which include an edge of length zero.

Proof. The proof of smoothness is similar to the proof of smoothness of the Morse moduli space, with the
additional twist of transversality required. For the proof of dimension, we break into two cases

• If k = 1, then we are in the case of Morse flow lines, and we already know the dimension of this moduli
space. Notice that the dimension of the moduli space is given by dim)W+

c0 ∩W−c1) − 1, where the −1
comes from the fact that we quotient out by the action of R on M1.
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• If k ≥ 2, then we can compute

dim(M(c0; c1, . . . , ck) = dim(W+
c0 ∩W−c1 ∩ · · · ∩W−ck) + dim(Mk)

=− ind c0 + dim(Mk) +

k∑
i=1

ind ci

=− ind c0 + (k − 2) +

k∑
i=1

ind ci

This (k − 2) factor is why we treat the case of k = 1 separately, as the space of trees where every
internal vertex has valency 3 has no non-trivial self-automorphisms.

Just like in the Morse setting, these spaces admit compactifications by including broken flow trees. For
each 1 ≤ i < j ≤ k, define Tij to be the smallest subtree of T which contains the leaves labeled ci, . . . , cj ;
similarly, let Tk\ij to the subtree T \ Tij ∪ e, where e is the edge connected to the root of Tij .

Claim 3. The space MT (c0; c1, . . . , ck) admits a compactification by including broken flow trees, so that

MT (c0; c1, . . . , ck) =
⋃

1≤i<j<≤k
d∈Crit(H)

MTk\ij (c0; c1, . . . , ci−1, d, cj+1, . . . , ck)×MTij (d; ci . . . , cj).

Notice that this decomposition is exactly the same as the boundary stratification of ribbon metric trees.
In the setting of flow trees, we have a identification of flow trees that we previously did not see in the Morse
case given by the contraction identifications that we had for the space of metric trees.

Claim 4. Suppose that T/e is obtained from T by contraction along an internal edge. Then there exists an
embedding MT/e(c0; c1, . . . ck)× [0, ε)→MT (c0; c1, . . . , ck). This embedding is compatible with the boundary
compactifications.

This structure result on the space of metric trees of fixed combinatorial type, and the identification claim
allow us to assemble the Morse flow trees of a fixed valency into a smooth manifold. This gives us the major
theorem that we need for studying flow trees.

Theorem 4 (Fukaya). The space of metric trees of combinatorial type T with labels c0, . . . , ck is a smooth
manifold of dimension

(2− k) + ind(c0)−
∑
i≥1

ind(ci)

Furthermore, there is a compactification of M(c0; c1, . . . , ck) by broken Morse flow trees with codimension 1
strata given by

∂M̄(c0; c1, . . . , ck) =
⋃

1≤i≤j≤k
M(c0; c1, . . . , ci−1, d, cj+1, . . . ck)×M(d; ci, . . . , cj)

Remark 1. A word of caution: we are sweeping a lot under the rug here. For the purposes of exposition,
we’ve treated the analytic problem of attaching coherent transverse perturbation datum first and the combi-
natorial problem of handling how the different types of trees glue together second, and not being particularly
careful how these problems influence eachother. Also, we’ve taken our perturbation datum from the Morse
functions themselves. An alternate approach that we could have taken would be to assemble the set of maps
from (T, `)→ L into a polyfold, and use abstract perturbative methods to achieve the necessary transversality
instead.
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Remark 2. The choice of index is designed to make the product graded, and makes this a Morse Cohomology.
The moduli space M(c0; c1, . . . , ck) is zero dimensional only when ind(c0) = (2− k) + ind(ci). If we focus on
the trees that are suppose to contribute to our product (which are those trees with k = 2), we get a non-trivial
contribution to the product when

ind(c0) = ind c1 + ind c2

making the induced product by counting these trees graded in index.

1.3.1 Some Notation

I think at this point it becomes a good idea to introduce some additional notation, based on multiindices.
Since almost everything we will do here is dependent on order, when we write an index set I we will assume
that it is ordered. When we want to write a partition of a set K, we will write (I1|I2| · · · |Il) = K, and
always understand that I1 < I2 < . . . < Il.
When we write cK , we will mean the tuple (c1, . . . , ck).

∂M̄(c0; cK) =
⋃

(I1|J|I2)=K
M(c0; cI1 , d, cI2)×M(d; cJ)

This notation may take a little bit to get used to, but believe me, it’s going to be so worth it in a bit.

1.4 The Corresponding Algebra

There is a lot of data that we’ve tied together in our construction of the Morse-Fukaya algebra, and we would
like an algebraic framework that informs us of the relations between all of these trees that we are counting.
In the Morse homology setting, one defines a chain complex on the data C(L;H) := R〈Crit(H)〉 by counting
flow lines between the critical points. Whenever ind c1 = ind c0 + 1, we know that the space M(c0; c1) is a
compact zero dimensional manifold, and we may therefore count the points in it2. We define the differential
to be

〈m1(c1), c0〉 := #M(c0; c1)

The proof that this differential squares to zero uses the structure provided by Theorem ??, by noticing that

〈m1(m1(c0)), c1〉 =

〈
m1

(∑
d

〈(m1(c0), d

)
, d〉d, c1

〉
=
∑
d

〈m1(c0), d)〉〈m1(d), 〉c1〉

=#M(c0; d)#M(d; c0)

=#(∂M(c0; c1))

This count must be zero because the oriented count of boundary components of a zero 1 dimensional mani-
fold is zero.
We use this proof as a starting point for understanding the algebraic relations between the higherM(c0; c1, . . . , ck).

Definition 4. Let (L;H) be a Morse pair, and suppose we’ve picked regularizing data so that Theorem ??
holds. Then we define the higher Morse products

mk : C⊗k(L;H)→ C(L;H)

by taking counts of flow trees
〈mk(cK), c0〉 = #M(c0; cK).

This is a graded map of degree 2− k.

2Technically, we should count these points with orientation. This is a whole discussion that I would like to avoid, but the
details of orientations can be found in [Mes16].
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This gives us many more interesting products than we may have been interested in initially; for instance,
it contains something that looks like the product on cohomology defined by m2, but it also contains more
exotic products mk as well.
By repeating the proof that m1(m1(c0)) = 0 that we used for the Morse differential on these higher products,
we get the following (slightly odd ) relations.

Theorem 5. The higher products mk satisfy the A∞-relation, which is a relation for each k that

0 =
∑

(I1|J|I2)=K
±m|I1∪I2|(cI1 ,mi+j(cJ), cI2)

These relations are a bit confusing on first glance. I think the easiest way to get a feel for them is to
write down the first few of them:

m1(m1(c1) = 0

−m1(m2(c1, c2)) +m2(m1(c1), c2) +m2(c1,m
1(c2)) = 0

−m1(m3(c1, c2, c3) +m2(m2(c1, c2), c3)−m2(c1,m
2(c2, c3))

+m3(m1(c1), c2, c3) +m3(c1,m
1(c2), c3) +m3(c1, c2,m

1(c3)) = 0

The first relation can be interpreted as the matp m1 : C(L;H) → C(L;H) giving us a differential. The
second relation tells us that the product m2 and differential m1 have the Leibniz rule relation. The third
relation tells us that the associativity of the product holds up to a homotopy defined by the term m3.
The name A∞-relation comes from understanding the associativity rule of the product being loosened up
to (possibly infinitely many) homotopy relations. It is not surprising that the terms in the k A∞ relations
exactly correspond to the boundary strata of the k-associahedra.
On first glance this set of relations seems constructed to fit the requirements of having some kind of algebraic
structure matching the relations of flow trees. While it seems like A∞ algebras are forced upon us by the
combinatorics of our set up, there are in fact strong algebraic motivations for studying A∞ relations. While
we have not yet developed the notion of A∞ quasi-isomorphism, they are the natural object to study minimal
models of chain complexes.

Theorem 6. Let (C,m1
C ,m

2
C) be a differential graded algebra. Then there exists an (essentially unique) A∞

algebra (A,mk
A) with m1

A = 0 which is A∞ quasi-isomorphic to (C,m1).

2 Invariance

Let’s move onto showing that this A∞ structure that we’ve looked at is independent of the choice of Morse
function used. Let H0, H1 be two different Morse functions on L. There are several different ways already
existing in the literature to prove that C(L,H0) is quasi-isomorphic to C(L,H1). One usually constructs
continuation maps

fk : C⊗k(L,H0)→ C(L,H1)

by analyzing flow trees which partially flow along gradH0, and the continue to flow along gradH1. This
constructs a kind of homotopy between the mk

H0
and mk

H1
; by integrating together this homotopy one can

construct an A∞ homomorphism relating C(L,H0) and C(L,H1).
The approach that we’ll take harkens back to the geometric construction of the invariance of Morse theory.

2.1 A first attempt

The geometric proof of invariance of Morse theory for (L,H) comes from studying Morse theory on L × I.
Let Ht be an interpolation between H0 and H1, which is constant in t around a small neighborhood of 0 and
1. Let s1(t) : I → R be a S-shaped Morse function as drawn below. We now will study the Morse theory of

10



(L× I,Ht + s1). Provided that we choose s1 large enough, the critical points of Ht + s1 will be localize to
when t = 0, 1, so that

Crit(Ht + s1) = Crit(H0) t Crit(H1).

c0

c1

(L,H0)

(L,H1)
f1

I

s1(t)

Furthermore, the gradient of Ht+ s1 matches the gradient of H0 and H1 in a small neighborhood of t = 0, 1,
so we get that the Morse theory of L× I can be expressed as

C(L× I,Ht + s1) = cone(f1 : C(L,H0)→ C(L,H1))

where f1 is a count of flow lines that go from the critical points above 0 to the critical points above 1.
One can geometrically see that the relation f1m1

0 = m1
1f

1 by noticing that flow lines between t = 0 and t1
must either break on the left or right side; one can also see that this algebraically holds as the coning map
must be a chain map.
We would like our geometric argument to stand on slightly firmer ground. To describe the “flow lines that go
from the left hand side to the right hand side,” we’ll introduce a new moduli space. Let V be the hypersurface
t = 1

2 in L× I.

Definition 5. Let B(c0; c1) be the space of flow lines flowing from c1 to c1, with one marked point evaluating
to V .

By construction, half of such a flow line will lie in the t < 1/2 portion of L × I, and the other half will
lie in the t > 1/2 portion, so counting these exactly gives us the flow lines contributing to f1. Here, the B
stands for bicolored, where our coloring comes from whether we have already intercepted t = 1/2 or not.

c0

c1

(L,H0) (L,H1)

f1

V
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At this point, it’s very easy to prove that a count of bicolored flow lines gives us a chain map.

Claim 5. The space B(c0, c1) is a smooth manifold which admits a compactification by broken flow line
B̄(c0, c1). The boundary strata of this compactification is

∂B̄(c0, c1) =MH0
(c0, d)× B̄(c; c1) t B̄(c0, d)×MH1

(d, c1).

In short, this claim say that either flow lines break in the red section of a bicolored flow line, or in the
blue section. From this lemma, it quickly follows that f1 : C(L,H0)→ C(L,H1) defined by

〈f1(c0), c1〉 := #B(c0, c1)

is a chain map.
Our goal will now be to extend this argument to construct A∞ maps between the left and right side. At this
point, we run into several complications:

• It’s unclear what data an A∞ homomorphism should carry; certainly it should have more information
than just f1. We’ll end up constructing maps fk : C⊗k(L,H0) → C(L,H1) coming from bicolored
trees, which are the natural generalization of bicolored flow lines. This will be primarily what we
explore in 2.2.

• If we wanted to show that the map f1 was a ring homomorphism, we would have to show something
like

f1(m2
H0(c1, c2)) = m2

H1
(f1(c1), f1(c2).

In order to show this relation, we would look for configurations of flow lines breaking into f1(m2
H0(c1, c2))

and m2
H1

(f1(c1), f1(c2) in L×I. Unfortunately, the product m2
H1

never occurs in L×I, due to grading
reasons. We’ll have to find a work-around to this, which will spectacularly spiral out of control as we
are forced to accept more and more notation in Section?? .

2.2 The Combinatorics

The A∞ homomorphism relations can be geometrically captured through the multiplihedra, which has a
natural interpretation as the space of bicolored trees.

Definition 6. Let (T, `) be a metric tree. Let p be a point on the tree, not contained in the edge adjacent
to the root. The length of a point p ∈ T is the (possibly negative) length of the path from p to the vertex
whose neighborhood contains the root, which we will denote `(p). A bicolored tree is a tree metric tree with
a selection of parameter (T, `, τ). If T is stable, and if there is no vertex v ∈ T with `(v) = τ , then we call
(T, `, τ) a stable bicolored tree. To a stable bicolored flow tree we can associate the following data:

• A selection of points p ∈ T so that `(p) = τ . We will call these the transition points of the bicolored
tree. The number of transition points will be denoted κ(T, `, τ).

• A partitioning of the leaves of T given by the connected components of T \ {v ∈ V | `(v) < τ.}. The
indexing for the partition will be

(I1|I2| · · · |Iκ) = {1, . . . , ν(T )}.

There should be one transition point for each partition; we will order the transition points pi by their
partition.

We call this selection of points a bicoloring as it separates the tree into two halves: those of points which
have energy greater than the pi, and those of points which have less length. Notice that the moduli space
of j-bicolored trees is (a, b) × MT , as the parameter of bicoloring length determines where the coloring
switches. We will skip the steps to prove that this assembles into a nice space, as the proof should be
completely analogous to the construction of Mk.
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Theorem 7. The space of bicolored ribbon metric trees of valency k is a smooth manifold Bk.

The cell decomposition of this manifold is a little bit unclear; the combinatorial type of T does not
determine the cell. Such a cell is additionally subdivided based on inequalities involving the time τ and the
lengths γ which determine the number of transition points. For ease of notation, we will write B(T,`,τ) to
denote the cell which contains a bicolored tree of this fixed type.
There are now two kinds of non-compactness that occur; those that come from one of the lengths of the
edges going off to infinity, and a new boundary phenomenon that occurs from the length of the bicoloring
going off to either +∞ or −∞. As a result, we now have many new boundary configurations. When length
from bicoloring goes off to infinity, it is possible that many edge simultaneously break. For example, the
configurations at the top of this diagram all come from the energy bubbling off to +∞, and have 2 or 3
breaking points. The configurations on the left and right side come from the internal edge going breaking,
and the configurations on the bottom of this diagram correspond to edges breaking as the bicoloring energy
goes to −∞. picture

κ = 1 κ = 1

κ = 2 κ = 2

κ = 3 κ = 3

A key observation is that whenever a blue edge goes to infinite length, this also corresponds to the length
of the bicoloring going off to infinity. The moduli space of bicolored trees of valency k can be assembled by
gluing together j-bicolored trees of valency k together by their energies. When constructing the compacti-
fication of the moduli space of bicolored metric trees by including broken bicolored metric trees, where the
important factor is whether the length of the bicolored points goes off to infinity or not; roughly, we get two
kinds of boundary components, corresponding to breaking that occurs before the color change, and breaking
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that occurs after the color change.

Theorem 8. There is a compactification of B̄‖ into a manifold with corners. In this compactification the
one dimensional strata can be described by ⋃

1≤i≤j≤k
Bj−i+1 ×Mk−j+i

 ∪( ⋃
1=i1<...il=k

Ml × (Bi2−i1−1 × · · · Bil−i1−1)

)

Let’s describe these two strata: one should think of the left term as corresponding to bicolor trees that
broke in the blue segment, and therefore the length of the bicoloring does not go off to infinity. The more
complicated term on the right corresponds to when the length of the bicoloring goes to infinity; as a result,
possibly many red trees can break off. We’ll want to take the combinatorics of bicolored trees and encode it
in the geometry of a Morse function.

2.3 Flow Bicolored Trees

Bicolored trees come with more data than trees; the presence of the juncture gives us internal evaluation
maps from the bicolored tree to the target space of the map.

Definition 7. Let (T, `, τ) be a bicolored tree, and let j = κ(T, `, τ) denote the number of transition points,
which we will label p1, . . . , pj ∈ T . Let H : X → R be a Morse function, and V1, . . . , Vj ⊂ X be submanifolds.
Let c0, . . . , ck be critical points of f . A (T, `, τ) flow tree bicolored at V1, . . . , Vj is a (T, `) flow tree in
Mk(c0; c1, . . . , ck) with the additional restriction that each bicolor point is mapped to a submanifold

u(pi) ∈ Vi.

While we cannot guarantee any good breaking behavior if a critical point of H lies on V , when the critical
points of X are disjoint from the submanifold V , in which case many of the facts we know about flow trees
carry over.

Claim 6. Fix (T, `, τ) as above, as well as V1, . . . , Vκ various transition submanifolds. Suppose that Crit(H)∩
Vi is empty. Let B(T,`,τ),Vi

(c0; c1, . . . ck) be the set of (T ′, `′, τ ′) ∈ B(T,`,τ) flow trees. Then B(T,`,τ),Vi
(c0; c1, . . . , ck)

is a smooth manifold of dimension(
(2− k)− ind c0 +

k∑
i=1

ind(ci)

)
+

(
1−

j∑
i=1

codim(Vk)

)
.

There are a few interesting to note in this theorem. The first is the dimension of the moduli space. The
first portion is simply the dimension of the moduli space of flow trees; the subtraction of codimension is the
forced incidence condition of points. The extra parameter of τ increases the dimension by 1.
There are several boundaries for boundaries of B(T,`,τ),Vi

(c0; c1, . . . , ck). A large component of the boundary
comes from the cell B(T,`τ) where τ approaches ` in such a way that the number of transition points κ(T, `, κ)
changes. When this happens, two or more of the of the transition points pi, pi+1 will approach eachother,
and so the resulting unstable bicolored flow tree will have a transition point mapping to Vi ∩ Vi+1. This
will become a notational nightmare for us in a moment, but until then, here is a picture motivating what
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happens at these transition times.

c1

c2

V1

V2

c0

p1

p2
c1

c2

V1

V2

c0

p12

c1

c2

V1

V2

c0

Let’s first introduce a piece of notation.

Notation 1. Let V = {V1, . . . Vk} be a set of transversely intersecting manifolds. Let I ⊂ {1, . . . , k}. Define
VI =

⋂
i∈I Vi, and whenever J = {i, . . . , j}, define the contracted set of submanifolds

V∩I := {V1, . . . , Vi−1, VJ , Vi+1, . . . , Vk}

and the restricted set of submanifolds
V|I := {Vi}i∈I

The diagram suggests we should define the following objects.

Definition 8. Pick k, a valence, and select a selection of transversely intersecting submanifolds

V = {V1, . . . Vk.}

Recall that given a flow tree (T, `, τ), we can select a subset of leaves Ij ⊂ {1, . . . , k} for each transition point
pj. A bicolored flow tree with valency k and transition points inherited from the V is a bicolored flow tree
(T, `, τ) where the point pj is labeled by the submanifold VIj .

Theorem 9. The space of k-valent bicolored flow trees with transitions inherited from V is a smooth manifold
of dimension (

(2− k)− ind c0 +

k∑
i=1

ind(ci)

)
+

(
1−

k∑
i=1

codim(Vi)

)
We’ll denote this moduli space BV(c0; cK).

It might be unexpected that we have consistency of dimension here, but as we lower the number of
constraints coming from evaluation maps, we increase the codimension of the constraining submanifold,
giving us a constant dimension across the moduli space. After this argument, we expect the following
boundary behavior:

Theorem 10. The moduli space BV(c0;CK) admits a compactification by broken bicolored trees:

∂B̄V(c0;CK) =
⋃

(I1|J|I2)=K
(BV∩J (c0; cI1 , d, cI2)×M(d; cJ))

∪
⋃

(I1|···|Il)=K

 M(d1, . . . , dl)
×

BV|I1 (d1, CI1)× · · · × BV|Il (dl, cIl)


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While the boundary decomposition looks suitably terrifying, this exactly the boundary combinatorics that
we had for the space of bicolored trees, where I’ve separated the two kinds of breaking (bicoloring length vs.
edge length) going to infinity in two separate terms, combine with the necessary data of remembering how
the constraints {Vi} are inherited to the broken configurations.
We can assemble counts of bicolored flow trees to assemble some algebraic maps.

Definition 9. Let (X,H) be a manifold with Morse function, and let V be a selection of transition subman-
ifolds disjoint from the critical points. Define the bicolor maps transitioning at V to be

bk{Vi} : C⊗k(X,H)→ C(X,H)

by the structure coefficients
〈bkV(c1, . . . , ck), c0〉 := #BV(c0; cK).

Non-surprisingly, this satisfies an algebraic relation coming from the combinatorics of the boundary strata
of B.

Theorem 11. For each k, the bicolor maps satisfy the following algebraic relations:∑
(I1|J|I2)=K

b
|I1∪I2|
V∩J (cI1 ,m

|J|(cJ), cI2) =
∑

(I1|···Il)=K
ml
(
b
|I1|
V|I1

(cI1), · · · b|Il|V|Il (cIl)
)

This is an ugly mess of algebra! One should be particularly bothered that each of the operations bk is
dependent on a bunch of choices of hypersurfaces. Let’s move on to an application before we are forced to
take on any more notation.

2.4 Application: Geometric Continuation maps

Let’s look at the second of the relations given by flow bicolored trees,

b1V1∩V2
(m2(c1, c2) + b2{V1,V2}(m

1(c1), c2) + b2{V1,V2}(c1,m
1(c2)) = m(b2{V1,V2}(c1, c2)) +m2(b1V1

(c1), b1V2
(c2)

This would almost pass for an A∞ homomorphism, if we didn’t have all of these dependencies on Vi.
In order to get this to match up with our f1 definition of the continuation map, we’ll want to find a relation
between the following terms

b1V1∩V2
∼ b1V1

∼ b1V2
∼ f1

It is unreasonable for these three terms to be the same thing. Let’s draw out a preliminary picture

c1c0

c1

bV1

bV2
bV1∩V2

c1
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While these three flows do not correspond to the same flow line, one could imagine that we equip (L× I× I)
with a suitable Morse function so that all three of these contribute to a count of flow lines giving us the A∞
homomorphism relations.

I × I

L

Here is the inspiring picture, where the configurations in the gray box will contribute to the f2 continuation
map. The relations giving the 5 terms in the k = 2 relations can be realized as broken bicolored flow trees.

c1

c0

c0

c1
c1

c1

c0

c0

c1
c1
c1

c1

c0

c0c0

c1
c1

c1

c0

c0

c1

c0

c1

c1c0

c0
c0

c1
c1

c1

c0

c0

c1
c1

m2(f1, f1)

m1(f2) f2(−,m1) m2(f1,−)

f1(m2)

Basically the rest of this section is developing the notation and definitions to make this picture a proof of the
A∞ relations. Of particular interest to us should be the configuration corresponding to m2(f1, f1), where
we should understand this as a product in the fiber spread out over a product in the base.

Definition 10 (This needs work). Let H0, H1 : L→ R be two Morse functions. A consistent k-interpolation
between H0 and H1 is a choice of consistent k − 1 interpolation datum, and a Morse function Ht1,...,tk :
L× Ik → R satisfying the following conditions;

• (Non Critical) H only has critical points when (t1, . . . , tk) ∈ {0, 1}k.

• (Continuation) There exists ε so that whenever ti ≥ 1− ε, Ht1,...,tk = H1

• (Consistency) There exists ε so that for each i, whenever ti ≤ ε, we have Ht1,...,tk = Ĥt1,...,t̂i,...tk
, where

Ĥs1,...,sk−1
is the interpolation datum from the k − 1 function.
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• (Diagonal Consistency) In a small neighborhood of the diagonal, Ht,...,t = Ht.

If Ht1,...,tk is a consistent k − 1 interpolation data, the critical points of (L× Ik, Ht1,...,tk) correspond to
copies of the critical points of H0 and H1. The critical points of Ht1,...,tk in the base project to vertices of
the cube, and we will label them xI , where I ⊂ {1, . . . k}.

Lemma 1. The critical points of Ht1,...tk can be labeled as

• c ∈ CritH0,

• c⊗ xI , where the I 6= and c ∈ CritH1.

The critical points belonging to ({0, 1} \ (0, . . . , 0)) × Crit(H1) have a very clean algebraic structure
coming from the Kunneth formula, where Ik is given critical points so that its algebra is the alternating
algebra generated by x1, . . . , xk.

Lemma 2. Let c1, . . . , cj ∈ Crit(H1). Then

mj
Hk(c1 ⊗ xI1 · · · , cj ⊗ xIj ) = mj

H1
(c1, . . . , cj)(tJ)

where
tJ = I1 t · · · Ij

if the sets Il are disjoint.

Our configuration comes with a nice set of surfaces Vi given by

Vi := {ti = (1− ε)}.

Finally, we are in a good position to define the A∞ homeomorphisms.

Definition 11. Fix a consistent family interpolating data. Let J ⊂ {1, . . . , k}. Define the geometric contin-
uation maps

fJ : Crit(H0)→ Crit(H1)

by taking the composition

bJV|J : Crit(H0)→ Crit(Hk)
πxJ−−→ (H0)

Also define
f I1∪I2 : Crit(H1)→ Crit(H1)

by taking the composition
bI1∪I1V∩J .

Our consistency condition tells us that this definition only depends on |J |.

Claim 7. If |J | = |J ′| then fJ = fJ
′
. Additionally, if |I1 ∪ I2| = J , we have the same deal.

Due to the independence from J , we will define f j : C(L,H0)⊗j → C(L,H1) by selecting any such J .

Theorem 12. The f j satisfy the A∞ homomorphism relations.

Proof. The proof at this point is computation. To check the A∞ homomorphism relation, we start with the
relation on the set of bicolor maps∑

(I1|J|I2)=K
b
|I1∪I2|
V∩J (cI1 ,m

|J|(cJ), cI2) =
∑

(I1|···Il)=K
ml
(
b
|I1|
V|I1

(cI1), · · · b|Il|V|Il (cIl)
)

We now can make some simple substitutions.
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• Whenever mj−i(cJ) 6∈ Crit(H0), the term

b
|I1∪I2|
V∩J (cI1 ,m

|J|(cJ), cI2) = 0

This is because the maps b
|I1∪I2|
V∩J are only nonzero when the inputs come from Crit(H0). We may

simplify the left hand side to

b
|I1∪I2|
V∩J = f |I1∪I2|(cI1 ,m

|J|
H0

(cJ), cI2).

• The right hand side is a little trickier. The bicolor map b
|I1|
V|I1

ends up computing some element of the

form
(f I1(c1, . . . , ci−1) + Terms with x)⊗ xI1

By Lemma ??, the higher xi terms will disappear in the product. We may safely substitute bI1V|I1
→

f |I1| ⊗ xI1 in the right hand side. After making these substitutions,∑
(I1|···Il)=K

ml
(
b
|I1|
V|I1

(cI1), · · · b|Il|V|Il (cIl)
)

=
∑

(I1|···Il)=K
ml
(
f
|I1|
V|I1

(cI1)⊗ xI1 , · · · b|Il|V|Il (cIl)⊗ xIl
)

=
∑

(I1|···Il)=K
ml
H1

(
f |I1|(cI1), · · · , f |Il|cIl)

)

This proves the A∞ homomorphism relation.
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